Health Effects of Shipping Related Air Pollutants

Diane Mitchell, Ph.D.
Air Pollution Specialist
Population Studies Section

California Environmental Protection Agency Air Resources Board

2/1/01

Overview

With the South California Coast Air Basin as an example

- Contribution of Marine Vessels to potential health problem
- Lung the major organ affected
- Health and Environmental Effects of different classes of air pollutants
- Summary and Current Studies

Marine Vessels are a Major Source of Air Pollution

South Coast Air Quality Management District News 7/8/98

"Ocean going ships, harbor tugs and commercial boats emit TWICE as many smog forming emissions as all of the South coast Air Quality Management District's power plants"

2/1/01

SCAQMD Estimated Annual Average Emissions 2000 Tons / Day

Source	ROG	СО	NOx	SOx	PM10
Total SC Air Basin	1094	7286	1212	90.3	374.3
Marine: Total	54.3	312.6	54.4	27.2	5.20
" : Commercial	4.29	5.26	43.7	27.1	3.14
": Recreation	50.0	307.3	10.7	0.17	2.06
% of SC Basin:	Percentages				
Comm. Marine	0.39	0.07	3.61	30.0	0.84
Total Marine	4.96	4.29	4.49	30.2	1.39
Tot. Marine as					
% Total Mobile	7.96	4.57	5.11	42.2	12.4

Exposure to Airborne Materials

Average Adult breathes about
11,000 liters / day.
The Respiratory Tract and Lung are the sites of primary exposure to air pollutants

Health Effects of Oxidant Air Pollutants

OXIDANTS Ozone (O3) and Nitrogen dioxide (NO₂)

NOx + Reactive Organic Gases (ROG) +

 \bigcup

OZONE

SMOG

2/1/01

Health Effects of Oxidants

- Both Ozone and NO2 are strong oxidizing agents and will damage lung tissue, causing inflammation.
- Lung damage, and reduced lung function
- Increased Respiratory Illness
- Aggravates breathing problems, cough, chest pain and Asthma

Environmental Effects of Oxidants NO₂ and O₃

- Oxidant damage to leaves
- Crop loss

(in CA = \$ 300 - 700 million / year)

- Damage to rubber and plastics
- Damage to Ecosystems

Sulfur Dioxide Health Effects

Short Term Exposure :

- Irritates and Restricts Airways
- Chest Tightness
- Reduces Mucus Clearance

Long Term Exposure, few studies, but suggest :

- Bronchitis
- Suppresses Immune System

Sulfur Dioxide in the Environment

- · Effective restrictions on sulfur content of fuels -
- Ambient SO_2 in CA \downarrow by > 60% over 20 years
- Shipping produces considerable percent of total SO₂ in CA.
- SO₂ Remains problem in Eastern USA

Acid Rain, deposition degradation of crops, water, environment

What are PM10 and PM2.5?

PM 10: Particulate material with a diameter of 10 microns or less

PM 2.5: Particulate material with a diameter of 2.5 microns or less

What particles are of concern?

Particles 10 microns or less (PM10) bypass body's defenses and enter lung

Coarse fraction (>2.5-10 µm) deposits in the airway, the deep lung

Fine fraction (<2.5 µ m) easily penetrates to deep lung

<u>Ultrafine</u> fraction (<0.1 µ m) like gases--spread throughout lung

2/1/01

Studies show particles damage lungs:

- Increase asthma attacks
- Aggravate bronchitis
- · Reduce lung function growth in children
- Contribute to premature death and hospital visits of people with respiratory and cardiac problems

Health Effects of Diesel and Heavy Fuel Oils

- **Ultrafine PM** (< 0.1µm) associated with:
 - Respiratory Illness, Cancer,
 Asthma (bound allergens)
 Cardiovascular Disease
 Decreased lung function
- Toxic Air Contaminants Lung and Bladder cancer
- Pollutant gases Respiratory , Cardiopulmonary and ecological effects

2/1/01

Diesel PM's Contribution to Potential Cancer Risk from Ambient Air in California

Component	Cancer Risk * Excess	Contribution to
	Cancers / million people	total Risk
Total Cancer Risk	758	
Diesel Exhaust PM	540	71.2%
1,3 Butadiene	74	9.8%
Benzene	57	7.5%
Other VOCs **	78	10.4%

Based on the 2000 Emission Inventory, assuming exposed for 70 years, inhalation route only.

ARB October 2000

^{**} Carbon tetrachloride, polycyclic aromatic hydrocarbons, e.t.c.

Health Effects - Summary

Urban Ambient Air Quality is still not acceptable

- Oxidant levels (smog)
- PM
- Toxic Air Contaminants (TACs)

Marine Vessels contribute to Air Pollution on land

- major problems NOx and ROG (form Ozone)
- PM (Ultrafines from Diesel) and TACs
- SOx

2/1/01

What we still need to know: Current Studies (ARB)

Long term Effects of Air Pollution

Children's Health Study (USC)

Fresno Asthmatic Children's Environment Study (UCB)

Mechanism of Effect of PM especially Ultrafines

Ambient Aerosol Concentrator / Toxicology

(UCLA / USC)

Investigation of Complex Mixes

Ozone, NO₂ and CO / Controlled Exposures (UCSF)

